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Abstract

In the last decades, the significant benefits of integrating control aspects in the early stages of process design have been shown. However,
polymer engineering is just now incorporating this important methodology. Besides, the particularly difficult control problem of a grade transition
in a polymerization reactor should be able to cope with process perturbations and uncertainty in the operating conditions and model parameters. In this
work, a simultaneous process and control system design under uncertainty is performed for optimal grade transition operation. The process design
includes reactor unit and initiator type selections. The control system design involves finding the best combination of controlled and manipulated
variables, and the optimal controllers’ tuning parameters. Discrete design decisions are incorporated by means of discrete optimization variables.
The resulting optimal design minimizes oft-specification product during grade transition and guarantees feasible operation in the full range of the

considered uncertain parameters and process perturbations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The traditional approach for dealing with operational aspects
(optimal operation and control) of polymerization and other
chemical processes consists in treating them sequentially with
the process design. That is, first the process is designed so as to
achieve an optimal performance using a fully specified nominal
case, and only when the process or equipment has been designed,
operational issues are taken into account. These may include the
control system design as well as safety, reliability and flexibility
of the process design. However, the sequential approach to these
two fundamental topics does not consider that process operabil-
ity is an inherent property of its design, which greatly affects
long-term economy as well. This has recently motivated a strong
interest in both academia and industry towards the integration
of process design and control, supported to a great extent by
the development of efficient algorithms for the solution of the
mathematical problems involved [1,2]. However, few of these
efforts have been applied to polymerization processes. Some
of these are the works by Chatzidoukas et al. [3] and Astea-
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suain et al. [4,5]. These authors have shown that, due to the
large amount of design, operative and control variables affect-
ing the performance of polymerization reactors, and the strong
interaction between them, it is possible to obtain an important
benefit by applying integrated design and control strategies to
polymerization processes.

An operation of major importance in polymer production is
grade transition. Large-scale continuous polymer plants typ-
ically produce several varieties of the same polymer, called
grades, in the same equipment. Each of these grades has different
flow and solid-state properties, as required by different applica-
tions. In order to satisfy changing and extremely demanding
market requirements, the changeover between the productions
of different grades must be performed frequently. This operation
is carried out by switching between operating points, generating
off-specification product in the meantime. Therefore, optimal
grade transition policies that minimize the material out of spec-
ification and the transition time are essential for the profitability
of polymer plants. As a consequence, a considerable number
of publications have focused on determining optimal transition
policies for different polymerization processes. Most of them
involved open loop optimization to find the best profiles of the
manipulated variables [6-9]. Nevertheless, optimal transition
operation can only be achieved with a suitable control system
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that guarantees that the optimal transition policies are actually
followed in spite of the presence of process perturbations and
uncertainties. As pointed out by McAuley and McGregor [6] in
their open loop analysis, the lack of process feedback can cause
the actual trajectories to deviate from the optimal ones due to
process perturbations and other changing conditions.

Polymerization processes often present highly exothermic
reactions and significant viscosity variations along the reaction
path, leading to complex heat-transfer and fluid dynamics [10].
Control of processes with these characteristics is a challenging
task, and has motivated abundant research into the development
of efficient control schemes [11]. However, most of the publi-
cations dealing with control of polymerization processes during
grade transition have assumed that the target transition policy
had been designed in advance, or used a sequential approach to
deal with the process design and control.

A very important issue that has seldom been considered in
previous optimization and control studies of polymerization sys-
tems is the effect of uncertainties. It is well-known that a large
number of parameters affecting polymerization processes are
likely to suffer from uncertainty in their values, such us the oper-
ating conditions (i.e. feed flow rates and concentrations, catalyst
activity, fouling, etc.), model parameters (i.e. heat-transfer coef-
ficients, Kinetic constants, etc.), the costs of raw materials or the
prices and demand of the products. It is possible that an optimal
design under nominal operating conditions would show a poor
performance or even be inoperable due to the variation of any
of those parameters. This is why it is very important to develop
the optimal process synthesis ensuring feasible operation for the
entire range of uncertainties. Optimization under uncertainty has
been discussed widely in the literature [12]. It has been shown
that the complexity of these problems notoriously increases if the
optimization includes discrete variables [13]. One of the well-
known approaches for this kind of problem is called the “worst
case” algorithm [12], which was later improved by Raspanti et
al. [14,15] by the use of an overestimation function.

This work presents the simultaneous process and control
system design of a styrene polymerization reactor for optimal
grade transition operation. A previous work [5] is extended so
as to incorporate process perturbations and uncertainties in the
design stage. The design problem involves finding simultane-
ously (a) the best process design, which includes both discrete
and continuous decisions, and (b) the best control scheme,
taking into account structural and continuous decisions while
ensuring feasible operation in the presence of process perturba-
tions and for any possible realization of uncertain parameters.
Unlike most previous grade transition studies, the steady-state
operating points are not known in advance, but are part of the pro-
cess design. For the particular example we study in this work,
the “process design” is limited to the selection of the reactor
size and the type of initiator to be used from a finite set of
given options, together with the steady-state operating points
for producing two given polymer grades. The “control system
design” requires choosing the best pairings between controlled
and manipulated variables using a multivariable PI controller
and a ratio controller, and the parameters for those controllers
(set points, gains and reset rates). The worst case algorithm
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Fig. 1. Polymerization reactor.

[12,14,15] is used to solve the optimization under uncertainty
problem.

2. Problem statement

Solution polymerization of styrene in continuous processes is
often carried out using a combination of different reactor types.
In a typical plant, the reaction mixture goes through several
polymerization units connected in series, each of them equipped
with an agitator and appropriate heat-exchange systems. The
output is then pumped to a devolatilizer unit to separate the
unreacted monomer and the solvent from the polymer. The hot
viscous polymer is then pelletized and finally packaged [16].
Usually, CSTRs are appropriate in the first stages, operating
at low conversions to ensure moderate viscosities. Then, the
polymerization is continued in other reactors, such as linear flow
reactors, so as to reach higher conversions [16]. As a first step,
due to the complexity of the mathematical problem involved
in this study, only a first stage CSTR will be considered in the
present process design and control analysis.

A schematic representation of the reactor is shown in Fig. 1.
Styrene monomer, initiator (AIBN or TBPB) and solvent (ben-
zene) streams compose the reactor feed stream. Reactor output
consists of polystyrene, unconverted monomer, initiator and sol-
vent. Cooling water is used to remove the heat released by
the polymerization. The control system of the process is com-
posed by a multivariable PI controller plus a ratio controller,
and takes as possible controlled variables the reactor tempera-
ture, the polymerization rate and the number average molecular
weight. The alternatives for the manipulated variables are the
monomer, initiator, solvent and jacket flow rates. The optimal
selection and matching of controlled and manipulated vari-
ables are part of the design problem. Process model equations
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Table 1 Table 3
Process model equations Model parameters
ar 1 effic 0.6 [20 =1 0.5888 mol L~! [20
o =yl @il— oD —kal M AdAIBN 5.95[>< ]1013 s~1 [20] A;fzf}\(jzﬂo 8.6981 mol L~! {20}
dm 1 3 Ed,AIBN ]23,853.658Jm01_1 [20] Tf’() 330K
o = v (@mMr— QM) — kp Mo — SkamM @ Agteps 8439 x 1083571 [21] 0o 0.2625Ls~!
ar 0 (—AH,) UA Eqtes 133,888 mol~! [21] Mwi 104.15 gmol~!
o - yTE-D+ C kpMao — PCfV(T I ©) Ap 1.06 x 107Lmol~'s71 [20]  Mway ~ 164.2gmol ™!
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j PiCpiVi E 7008.702 Jmol ™" [20] O max 41L
aMe 1 Vo 3000L Qi min 0
Tto = Skiehg = %MO ® —AH,  69,919.56Jmol~! [20] Oimax 0.066 L
M, , 0 UAg 293.076J s~ K~! [20] Om,min 0
el kiehy 4 kpMig — VMI 6) oCp 1507.248 JL-1 K~! [20] Om.max 1.31L
5 0iCpi 4045.7048 JL~' K~ [20]
W i+ Sk + 322012 — Lt M
dr tc/M P 0 klc % 2
3o = 2effickqr ] + 2kquM? ® in Table 3. More details about model assumptions and mass
ke balances formulation can be found elsewhere [5].
Pr = k, Mg ) The analysis in this work is constrained to a transition
M, between two polystyrene grades as a way to show the poten-

Mt Mm 10) tial benefits of this methodology with an optimization problem

M, of limited size. This approach can be effortlessly extended to
Mn = Mwy Mo (n deal with more complex transition sequences, at the expense of

M, longer computational times. Then, the design problem focuses
Mw = Mwy — 12) S Lo

M, on a CSTR polymerization reactor, which is meant to pro-
pd = Mw (13) duce, at steady-state, two polystyrene grades which are defined

Mn by the following specifications: grade A, Mn=40,000 g/mol
(UA) = UA, Ai (14) and Mw =60,000 g/mol); grade B, Mn=75,000g/mol and
0

are shown in Table 1. The differential equations include two
mass balances, two energy balances and three moment balances.
The algebraic equations define several auxiliary variables, the
average molecular weights, the polydispersity and the rate of
polymerization. The kinetic mechanism considered to set up the
mass balances includes the reactions of initiator decomposition,
thermal initiation of the monomer, chain initiation, propaga-
tion and termination by combination. Transfer reactions are not
included, because they are not significant for the system under
study [17,18]. Gel effectis neglected, as process operating condi-
tions and process design specifications involve a relatively high
solvent volume fraction, of around 50%, and low monomer con-
version, for which the gel effect is not significant [19]. In order
to improve the efficiency of the numerical methods, the model
equations are converted to a dimensionless form obtained by
means of the dimensionless variables defined in Table 2. The
numerical values of the different model parameters are listed

Table 2
Dimensionless variables
_ 1 — M — Is — My — T —T;
T=— M=—  T=-— Mi=—— T= Lo
It M It M Tt o
_ T —Tro — Te—Trog — Ti¢—Trog — My — M
Ti _ 4 f,0 T = f ,0 Tj,f _ j.f £,0 My = 0 M = M1
Tt Tt o Tt o Mz Mz
- Qi ¥ Qm - Qs Y Q - QOt
i=— m=— s = — 0=— 1=—
Qo Qo Qo Qo 0

Mw = 112,500 g/mol. A discussion about possible results in case
of transitions between two grades in both directions (A to B and
B to A) or involving more than two polymer grades will be
provided.

The simultaneous process and control system design problem
aims to obtain optimal grade transition operation when changing
from grade A to grade B taking into account known perturbations
and uncertainties in operating conditions and model parameters.
Details are described next.

2.1. Objective function for the transition from grade A to
grade B

Usually, objective functions for grade transitions are defined
based on economic goals. There are two typical alternative sce-
narios [6,7]: (a) high market demand and maximum capacity
operation. In these conditions, it is usually convenient to meet
the new product specifications as soon as possible, even at the
expense of producing more off-specification product; (b) low
demand and operation at reduced capacity, in which it would be
preferable to minimize the amount of off-specification product,
even though this may extend the transition time.

The selected objective function for the design problem ana-
lyzed in this work prioritizes a fast transition. It consists of
an integral quadratic function, commonly used in this type of
problems [6], as shown in Eq. (15).

It
FO = / (Mng — Mn(¢))? dt (15)
0
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In this equation, Mngp is equal to 75,000 g/mol (grade B num-
ber average molecular weight (Mn)), and Mn(0) takes the value
0f 40,000 g/mol (grade A Mn). This objective function will min-
imize off-specification Mn as well as the transition time, because
the upper limit of the integral in Eq. (15) (#¢) is treated as an addi-
tional optimization variable [3]. A fast transition is emphasized
with this objective function. However, final suitable conversion
levels and other steady-state variables’ values are ensured by
the optimization constraints shown in Table 4. Flow rates dur-
ing transition where not specifically included in the objective
function, because minimizing off-specification polymer is by
far more important during this operation [22].

2.2. Optimization variables and process constraints

Optimization variables include both process and control sys-
tem design variables, which are determined simultaneously in
the same optimization problem. Process design includes the
reactor unit, selection of initiator, and the steady-state operating
points. The corresponding optimization variables are:

- Reactor volume (V): three discrete allowed values: 2000, 3000
and 3500 L.

- Initiator type (YAIBN, YTBPB): azobis(isobutyronitrile) (AIBN)
or tert-butyl peroxybenzoate (TBPB).

- Feed temperature (Ttp): equal for the two grade operating
points.

- Nominal operating temperature for grade A production (7a).

- Nominal operating temperature for grade B production (7).

All these variables are treated as time invariant. For the
particular mathematical problem considered here, these vari-
ables completely define the steady-state points. It is assumed
that from previous process analysis and equipment availabil-
ity, the selection of the reactor capacity has to be made from
the three alternatives mentioned above. Reactor unit specifica-
tion is completed with: if V=2000L, V;=2208 L, A/A( =0.763;
if V=3000L, V;=3312L, A/Ag=1; if V=3500L, V;=3864L,
A/Ap=1.108. The optimization software is capable of dealing
with discrete optimization variables such as the reactor vol-
ume V. Initiator type selection is modeled by means of binary
variables (yaigN and yrppp). These variables are employed to
select the pre-exponential factor and the activation energy of the
initiator decomposition constant corresponding to the chosen
initiator:

A4 = A4, AIBNYAIBN + Ad TBPBYTBPB (16)
Eq = E4q AIBNYAIBN + Ed, TBPBYTBPB (17
YTBPB + YAIBN = 1 (18)

The integer constraint represented by Eq. (18) was included
to specify that, for this particular design, it is desired to use only
one initiator.

In order to find the best control system that would drive the
process from one steady-state to the other, a control scheme
composed by a multivariable PI controller plus a ratio controller

=1 O oyl
=2 0, Mn j=2
=3 0, Pr ;=3

Fig. 2. Control superstructure.

is analyzed. The ratio controller is not part of the optimization
problem. Itis used to maintain a constant solvent volume fraction
of 50%, which is appropriate for this process [23]. Therefore, the
ratio controller is represented by Eq. (19), relating the solvent
flow rate to the monomer and initiator flow rates.

Qs =0i+ 0On 19)

The PI controller superstructure is shown in Fig. 2, where
each line represents a potential PI loop between the manipulated
variable i and the controlled variable j. Possible manipulated
variables are the jacket (Q;), initiator (Q;) and monomer (QOm)
flow rates. Possible controlled variables are the reactor temper-
ature (7), the polymer number average molecular weight (Mn)
and the polymerization rate (Pr). Mn was selected as controlled
variable, although Mw might have been chosen as well. As the
polydispersity index presents small variations in styrene solution
polymerization, control objectives can be formulated in terms of
either Mn or Mw [24]. Online size exclusion chromatography
(SEC) devices are available that provide online measurements of
the average molecular weights. However, these measurements
involve a delay that ranges between 10 and 40 min [25]. To
overcome this problem, Kalman filters have been employed to
provide online estimates of the molecular weights between SEC
measurements. Successful molecular weight control schemes
have been implemented in this way [21,25,26]. Kalman filters
or empirical correlations have also been used in combination
with online sensors of reaction mixture properties other than
molecular weights, to obtain online estimates of the molecular
weights for control purposes [24,27]. Therefore, in this article
we consider that accurate online estimates of the polymer Mn are
available for the controllers by means of a suitable soft sensor,
as well as reactor and jacket temperatures and polymerization
rate measurements.

The equation representing the control superstructure is

3

J ] t

Uf = Ufpom + > _Kij [(Yj,ser Y+ — / (Yjset—=Y;) df’}
=1 i,j JO

(20)

where U} is the overall control action on the ith manipulated
variable (U} = QJT", Uj = 0f, Uy = Q7). U} o the nominal
value of U}, Y; the jth controlled variable (Y1=T, Y>=Tj,
Y3 =Mn); Y} s the set point of the ¥; variable, and K;; and 1/7;;
are the gain and reset rate, respectively, of the PI controller for
the ith manipulated variable and the jth controlled variable. The
terms in the sum represent the action of all possible PI con-
trollers over the ith manipulated variable. Which of these loops

will actually compose the final control system is part of the
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design problem. The selection of the PI loops is modeled by the
following constraints affecting the controllers’ gains:

Ki®yij < Kij <KDy, 1)

where y;; is the binary optimization variable representing the
existence of the PIloop between variables i and j. Eq. (21) forces
that K; ; =0if y; j = 0. We imposed that each manipulated variable
could be used to control only one variable, that is

3
i<l oi=1,...3 (22)
j=1

The set points of the controlled variables are considered
piecewise constant optimization variables, and the other con-
troller parameters are treated as time invariant ones.

Constraints on the manipulated variables were considered by
means of the following saturation function

Ui,maXs ifUi,max < U,'*
Ui = U;k» ifUi,min < U,‘* < Ui,max (23)
Ui,min’ ifUl'* < Ui min

which was smoothed as shown by Eq. (24) [5], to enhance the
performance of the optimization algorithm.

M=0%KW—MmMmmmﬂqumMH%ﬁ+Mmﬂ
x [tanh(10%(U; max — UF)) + 11+ 0.5U; max

x [tanh(10%(U; max — UF)) + 1] (24)

Lower and upper bounds for the manipulated variables are shown
in Table 3.

Then, optimization variables in this simultaneous process and
control system design under uncertainty problem involve a set
of 24 time invariant continuous variables (z): process variables
Tto, Ta and Tg, and control system variables U;f om =1, ...,
), Kij(@=1,..,3,j=1,..,3)and /7;; (i=1,...,3,j=1, ...,
3); a set of 3 piecewise constant variables (u(f)): control system
variables Yjset (j=1, ..., 3); a discrete optimization variable:
process variable V; a set of 11 binary variables (y): process vari-
ables ya1sN, yrBpB, and control system variables y;; (i=1, .. ., 3,
j=1,...,3). Notice that as all the elements of the control system
are designed at the same time, interactions between the differ-
ent loops are taken into account. Besides, integration with the
process design results in a better performance of the system as
a whole. It should be noted that no simplification of the process
model is carried out in order to design the control system.

Process feasibility is defined by the constraints shown in
Table 4, and product requirements involve attaining the aver-
age molecular weights of the two polymer grades used in our
problem.

2.3. Process uncertainties and perturbations

As examples of typical process uncertainties and perturba-
tions, for our design problem the following uncertainties in the

Table 4
Process constraints

Tho < 110°C 25) 0.18 < Conversiona < 0.5 (26)
Tg < 110°C 27) 0.18 < Conversiong < 0.5 (28)
T <67°C (29) T() <110°C (30)
Oja = 0.026 Ls™! 31 Ti(t) <95°C (32)
Qjp > 0.026Ls™! (33)

heat-transfer coefficient and in the feed temperature are consid-
ered:

(@ U=1+6)Uo,
(b) Ty =T+ 6,4°C,

-02<6, <02 34)
—-1<6, <1 (35)

Up and Tt are the nominal value of the heat-transfer coef-
ficient and the nominal feed temperature, respectively; Uy is a
known parameter, but Tt is a time invariant optimization vari-
able. 6=1[61, 0>] is the vector of uncertain parameters of the
design problem. Besides, a perturbation with known time pro-
file (v(¢)) is considered, consisting of a sinusoidal variation of
5 °C amplitude and 24 h period for the coolant inlet temperature,
as shown in Eq. (36).

. [ 2m
]}"f = Tj,f,nom =+ 5 sin ﬁt (36)

2.4. Worst case algorithm

The conceptual mathematical formulation for the simulta-
neous process and control system design under uncertainty
problem is shown in Eq. (37).

FO= min E {FO(u(%), 0, z, u(t), y, d, x(tr), a(ty), tr)}
zu(),ydtel’
S.t.

f(@), 0, z,u(t), y, d, x(t), x(t), a(t),t) =0
h(v(t), 0, z, u(t), y,d, x(t), a(t),t) = 0

g((®), 0, z,u(t), y, d, x(t), x(t), a(t),t) <0
uLB < I/t(t) < MUB

7B <z= 7B

ye{o, 1}
deD

0<t<t
(37

where v(¢) are the perturbations with known time profile; 6 the
uncertain time invariant parameters; z the continuous time invari-
ant optimization variables; u(?) the time variant control variables;
y the discrete optimization variables, which were described
previously; x and g are the state and algebraic variables, respec-
tively, of the process and control system model. Functions f{-)
and h(-) constitute the model algebraic—differential system (Eqs.
(1)-(14), (16)—(20), (24), (34)—(36)); g(-) the set of inequal-
ity constraints (Egs. (21), (22), (25)—(33), Mn and Mw of the
polymer grades), and D is the set of the three allowed values
for the reactor volume V. It is assumed that well-defined lower
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and upper bounds are available for each uncertain parameter,
thatis I' = {0:9LB <0< QUB}. Notice that Eq. (37) represents a
mixed-integer dynamic optimization (MIDO) under uncertainty
problem. The expectation term in Eq. (37) (Ege {-}) accounts
for the contribution to the objective function FO (Eq. (15)) of
all possible realizations of the uncertain parameters 6.

The optimization problem represented by Eq. (37) is solved
using a well-known technique, an iterative, decomposition algo-
rithm called the “worst case” algorithm [12], which is composed
of the following steps:

Step 1: Choose an initial set of discrete values for each uncer-
tain parameter. All possible combinations between them
lead to an initial set of scenarios 6’ = [0}, 6}, ...,6.],
i=1,...,ns.

Step 2: For the current set of scenarios, determine the optimal
set of optimization variables. This is achieved by solving
the multiperiod optimization problem

ns
FO= min {Zw"FO(u(zf), 0, 2, ulty), v, d, xi(tr), a' (tp), tf)}
z,u(t),y,d,tp
i=1

s.t.

F®, 0, z,u@®), y.d, X0, x'(0),d (), ) =0, i=1,..., ns
hu(t), ', z, u(®), y, d, X'(1), a' (1), ) =0, i=1,..., ns
(), 0", z, u(t), y, d, ¥(1), X'(1), a'(1), 1) <0, i=1,..., ns

uB < u(r) < uUB
7B <z <UB
yef{o, 1}
deD

O<r=<t

(38)

Notice that Eq. (38) implies that the process model
and constraints are replicated for each of the scenarios.
The expectation term of Eq. (37) is approximated by the
weighted sum of the individual values of the objective
function FO for each scenario. The weight factors w’
are discrete probabilities for the selected scenarios, such
that 7w’ = 1.

Step 3: Test the optimal point resulting from Step 2 for feasi-
bility over the whole range of the uncertain parameters,
over the entire time horizon of interest. This means
checking if, for the current optimal point, all constraints
will be satisfied for any possible realization of the
uncertain parameters. This is carried out by solving the
dynamic feasibility test problem

*

* ok * Ok * ok * ok . *
x(@, u(t), ¥, d, tr) = max gi(v(tr), 0, z, u(t), ¥, d, x(tr), x(tr), a(ty), tr)

S.t.
FQ@), 6, %, 14(1), Y, d, 50, x(1), a(t), 1) = 0
h(u(2), 6, %, (2, ¥, d, x(2), a(t), 1) = 0

(39)

* * k%
where /€L and z, ikt(t), Y,d, ty is the optimal point
found in Step 2. It has been assumed that all
path constraints have been converted into end-

point constraints. X(;, Zkt(t), ; 3 tic) represents the
highest possible value that any of the functions
gi(v(t), 6, Z ikt(t), ; 2 x(tp), x(tp), a(ty), t*f) can take for
any value of 6. Therefore, if X(?, ikt(t), ;, ;}, ;kf) < 0 the
optimal design is feasible because it implies that all con-
straints g(u(ty), 6, 2, 4(1), ¥, d, ¥(t), x(tr), a(tp), ) < 0
are satisfied for any value of 6, and the algorithm ter-
minates. Otherwise, the solution of Eq. (39) defines a
critical uncertainty realization, 6°, which is added to the

current set of scenarios, before returning to Step 2. Eq.
(39) can be solved in the following manner:

(a) Foreach constraint /€L, solve the dynamic optimization problem

! * ok * ok ok
X (z,u(t), Y. d, tf) =max g/(-), VIieL
0

s.t.
=0
h()=0

* ok * k% * % * k%
(b) Setx (z,u(z), y.d, tf) = max {X] (Z,u(t), Y, d, t¢
leL
(40)

Step (a) of the dynamic feasibility test involves solv-
ing L optimization problems. This can be replaced by
a single optimization if an over estimator of the whole
set of constraints g; is used [14,15]. For instance, the
function KS(0) defined as

1 L
KS@®) = In <Z exp(pgzw))) @1

=1

verifies that KS(0) > g,(0), VI € L. Parameter p verifies
that the higher its value, the smaller the gap between
the over estimator and the original functions. Therefore,
Steps (a) and (b) of the feasibility test can be replaced
by

* % * k% * % £k *
Xz, u(), ¥, d, tf)=mgx KS(u(tr), 0, 2, u(t), ¥, d, x(te), x(tr), a(tr), tr)

S.t.
fO=0
h() =0
(42)

The software gPROMS/gOPT (Process Systems Enterprise
Ltd.) was used to solve both the MIDO problem (Eq. (38)) and
the dynamic optimizations involved in the feasibility test (Eq.
(40) or (42)).

3. Results and discussion

Before solving the design problem under uncertainty, a design
problem under nominal conditions, that is, without uncertainty
or perturbations (01 =02=0, Tjf=Tjfnom) Was solved. Some
results are shown in Table 5, Figs. 3-5, and Eq. (43). The latter
shows the controller’s gains (K;;) and reset rates (1/z;;) for the
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Table 5
Optimal process design
\%4 2000 L (lower bound)
Initiator AIBN
Ta 76.4°C
T8 89.3°C
Ttpo 67 °C (upper bound)
=1 G, r =1
=2 O Mn ;=2
=3 0, Pr j=3
Fig. 3. Optimal control structure for nominal conditions.
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Fig. 5. Reactor temperature vs. time.

i—j PI loop.
K 0 —47.38Lg™!

K= |0 —54443.8Lmols ' g~! 0 ,
|0 262,500Lmols!g~! 0

X K 0 3.251 x 107051

—=10 1.978 x 1076571 0 (43)
[0 8.75x1073s7! 0

Polymer Mn and reactor temperature during grade transition
are plotted in Figs. 4 and 5, respectively. It can be observed that
the optimal control system performs the grade transition, which
involves an 88% increase in Mn, in a period of approximately
1 h, with negligible overshoot. This is accomplished by an initial
steep reduction in reactor temperature. Afterwards, the reactor
temperature is slowly driven to its new set point value, while
keeping tight control of Mn. These profiles are consistent with
previous results obtained by the authors for the same polymer-
ization system [5]. All other process variables remained within
their bounds.

Then, the design problem under uncertainty was analyzed.
Two initial values corresponding to their lower and upper bounds
were considered for each uncertain parameter, which lead to
these four process scenarios

€)) o' = [Gl,maXs 92,max];
(2) 6% =[61,min» O2.max];
3) 03 = [el,max, 92,min];
(4) 04 = [el,mina 92,min]'

Each scenario was assigned the same probability, that is
w'=025i=1,...,4.

The optimization algorithm stopped after the first evaluation
of Step 3, as no critical scenario was found that violated any
of the constraints for the current optimal design. The feasibility
test was performed using Steps 3(a) and 3(b), and also using
the KS over estimator. Equivalent results were obtained. How-
ever, the KS over estimator allowed obtaining a faster solution,
as a single optimization problem needed to be solved. Repre-
sentative results of the optimal design for these current set of
scenarios are shown in Figs. 4 and 5, Table 6 and Eq. (44). The
optimal controller structure was the same as under the nominal
conditions.

K 0 —96.87Lg™!
K=|0 —26,1960.3Lmols!g~! 0 ,
|0 24,8342.3Lmols ! g™! 0
K 0 4.15 x 107651
%: 0 0971 x 107851 0 (44)
[0 0.917 x 10705~ 0

The final control scheme involves two manipulated variables,
initiator and monomer flow rates, for Mn control. This is con-
sistent with the objective function of the design problem, which
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Table 6

Process design variables under uncertainties

14 3000L
Initiator AIBN
Ta 70°C
Ts 82°C
Tro 63°C

aims at driving the polymer Mn to the new grade specification
as fast as possible and keeping it at this value thereafter. The
coolant flow rate is employed for controlling the polymeriza-
tion rate. Although the final proposed control scheme does not
include a control loop for the reactor temperature, this variable
is kept within safety bounds by means of the polymerization rate
loop. Polymerization rate is very sensitive to the reactor tempera-
ture, so that changes in the latter are immediately reflected in the
polymerization rate. Therefore, any hint of temperature runaway
is soon detected and corrected by the polymerization rate loop,
by taking the polymerization rate back to its set point value. It
should be kept in mind that the optimization problem from which
the optimal control system was obtained, included constraints
on the reactor temperature during transition. Therefore, the final
control system, including polymerization rate set point and tun-
ing parameters of the polymerization rate control loop, ensures
safe temperature bounds for the considered perturbations and
uncertainties. In addition to this, serious operational problems
not included in the design, such as failures of the coolant feed
and increases of up to 10°C in the reactor feed temperature,
at different points during the grade transition, were simulated.
For these challenging scenarios, the performance of the optimal
control system was very satisfactory, as safe temperature bounds
were always maintained and the polymer Mn trajectory during
the grade transition remained close to its desired trajectory.

It can be seen in Table 6 that the optimal reactor size is now
3000L, instead of 2000 L when the uncertain parameters were
at their nominal values. In order to analyze why a larger reac-
tor, with consequent slower dynamics, was chosen for optimal
grade transition, a search space reduction was performed for the
optimization variable V, minimizing and maximizing this vari-
able subject to all steady-state process constraints. Assuming
that V was a continuous variable, it was found that for this set
of scenarios the minimum possible reactor volume was 2340 L.
In other words, this is the smallest reactor volume that allows
finding a feasible steady-state operating point for the whole set
of scenarios of the uncertain parameters. Therefore, the reac-
tor selected under nominal conditions would have resulted in
infeasible steady-state operation for some values of the uncer-
tain parameters. It can also be observed that the nominal value of
the reactor feed temperature is lower than in the previous case.
This is necessary so that the upper bound of this variable is not
violated in scenarios 1 and 2 (with 6, =1, corresponding to the
upper bound feed temperature of 67 °C). Reactor temperatures
atboth grade operating points are also lower than for the nominal
conditions.

Mn and reactor temperature during grade transition under
uncertainties are depicted in Figs. 4 and 5, respectively. Opti-

mal transition for Mn is slower than for the optimal design
under nominal conditions, and more oscillatory due to the sinu-
soidal perturbation in the jacket inlet temperature. Scenarios 1
and 2, the ones with the high feed temperature, allow faster
transition than the other two, which are at the low feed temper-
ature. The heat-transfer coefficient shows almost no influence
in Mn transition, as the scenarios with the same feed temper-
ature but different heat-transfer coefficient (1 and 2: high and
low heat-transfer coefficient, respectively, with the same high
feed temperature; 3 and 4: high and low heat-transfer coeffi-
cient, respectively, with the same low feed temperature), show
very little difference between them. However, uncertainty in
the heat-transfer coefficient does influence the reactor tempera-
ture profiles. For instance, consider the temperature profiles for
scenarios 1 and 2. For the latter, the upper bound of the reac-
tor temperature (Eq. (30)) becomes an active constraint, while
for the other scenario the maximum temperature is far from its
bound. The important effect of the feed temperature uncertainty
can be appreciated from the notorious differences between the
temperature profiles of scenarios 1 and 3 on one hand, and 2
and 4 on the other. The effect of the oscillatory perturbation in
the jacket inlet temperature is clearly appreciated in the reac-
tor temperature profiles. It should be remarked that the current
design ensures feasible operation for any possible realization of
the uncertain parameters.

The results presented in this work are valid for a transition
from grade A to grade B. If the transition in the opposite direc-
tion had been considered, that is from grade B to grade A,
the optimal process and control system design might be dif-
ferent. For instance, the best steady-state temperature for grade
B production when performing a transition from grade A to B,
could be different to the one if the transition from B to A were
considered. The optimal control structure and controller tuning
parameters could be different too. This has been shown in our
previous work [5], in which cyclic transitions between two poly-
mer grades was addressed in a simultaneous process and control
system design without uncertainty. The same holds for transi-
tions between more than two polymer grades. Therefore, a single
optimization problem that takes into account simultaneously all
the transitions to be performed should be solved instead. Never-
theless, the study carried out in this work is a good example of
the potential benefits of this methodology. The approach can be
easily extended to deal with more complex transition sequences,
though at the expense of a longer computational time.

The integrated process and control system design obtained
so far was compared with the one that would have resulted if the
traditional, sequential approach had been used (i.e. first, process
design based on steady-state considerations, and then design
of the control scheme). The process design for the sequential
approach is shown in Table 7. The selected reactor volume is the
smallest one that is operable at steady-state, as discussed before,
minimizing reactor cost. The initiator type and operating points
for grade A and grade B production were obtained by means of
a steady-state optimization aimed at maximizing an economic
objective [5]. Notice that now both grades are produced at the
same temperature, which is the highest one allowed for steady-
state operation.
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Table 7

Process design variables for the sequential approach

14 3000L
Initiator AIBN
Ta 100°C
Ts 100°C
Tro 57°C

Then, the control scheme for the grade transition between the
previously determined operating points was analyzed. Following
the traditional approach for dealing with this task [3], the control
structure in terms of loop pairings was tackled first. The relative
gain array (RGA) analysis [28], a well-known method that has
been used before for grade transition problems [3], was applied
to alinearized form of the reactor model in order to determine the
multiple-input, multiple-output control configuration. The same
set of possible controlled and manipulated variables used in the
simultaneous approach was considered for this analysis. The
resulting loop pairings were Q;—T, Q;—Mn and Oy,—Pr. Finally,
the controllers’ tuning parameters and set points for the grade
transition were optimally determined by solving a dynamic
optimization under uncertainty problem. In order to tune the
controllers’ settings with the same criteria as in the simultane-
ous approach, the same objective function, piecewise constant
description of the set points’ profiles, process constraints, per-
turbations and uncertainties of the optimization problem solved
with the simultaneous approach were considered. The result-
ing design was then compared with the simultaneous approach
design. As expected, the design obtained with the simultaneous
approach exhibits a better performance. Fig. 6 shows the Mn pro-
file during grade transition for both cases, for one of the scenarios
of the uncertain parameters. It can be seen that the grade transi-
tion is much slower for the design obtained using the sequential
approach. In this case, it takes about 14 h to reach the Mn value
of grade B, with a significant overshoot, and about 40 h to finally
settle around the new grade specification. With the simultane-
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Fig. 6. Mn profile during grade transition for the simultaneous and the sequential
designs for scenario 2.
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Fig. 7. Reactor temperature profile during grade transition for the simultaneous
and the sequential designs for scenario 2.

ous approach, these times were only 1.5 and 6 h, respectively.
Similar results were obtained for the other scenarios.

Fig. 7 compares the reactor temperature profiles during the
grade transition for both designs for the same scenario. The
initial steep reduction in the reactor temperature that results in
the increase of the polymer Mn up to the final grade value can
be observed in both cases. For the sequential design for which
the operating point was determined without considering oper-
ability during grade transition, the steady-state temperatures are
higher. Therefore, more time is required to carry out the neces-
sary decrease in the reactor temperature, resulting in a longer
transition time. Notice that the time needed to reach the tem-
perature minimums is approximately equal to the time needed
to reach the Mn value of the new polymer grade. These results
illustrate the benefits of dealing with process design and control
in an integrated manner, as opposed to the traditional sequential
approach.

4. Conclusions

A simultaneous process and control system design under
uncertainty was carried out for optimal grade transition oper-
ation in a styrene polymerization reactor. With polymer grades’
properties as the only specifications, reactor size and initiator
type were optimally selected (involving discrete decisions in
both cases), as well as the steady-state operating points. Simul-
taneously, the structure and tuning parameters of a multivariable
PI controller were determined, taking into account the strong
interaction of process design and control.

A “worst case” algorithm was used to incorporate uncertainty
in the optimization process. In this way, a design that achieves a
fast transition with minimal overshoot in spite of process pertur-
bations and uncertainties was obtained. Moreover, the optimal
design is guaranteed to have feasible operation for the whole
range of the considered uncertain parameters.

It was also shown that if uncertainties and perturbations are
not considered in the design, the process might suffer from infea-
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sible operation as it moves away from the nominal operating
conditions.
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